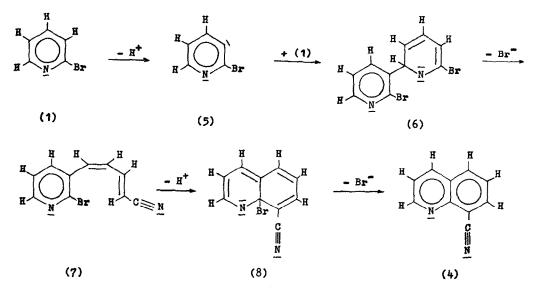
NOVEL TRANSFORMATIONS OF 2-HALOGENOPYRIDINES IN BASIC MEDIUM YIELDING 8-CYANOQUINOLINES H.N.M.van der Lans and H.J.den Hertog Laboratory of Organic Chemistry of the Agricultural University, Wageningen, the Netherlands.


(Received in UK 23 March 1973; accepted for publication 10 April 1973)

Reactions of 2-halogenopyridines and derivatives of these substances with strong bases were found to fall into several patterns. Together with substitutions, cinesubstitutions¹ and formations of chain compounds^{1,2}, ring transformations were observed. i.a.conversions of 6-substituted 2-halogenopyridines into pyrimidine derivatives² and of 3-substituted 2-halogenopyridines into pyrrole derivatives³.

We now wish to report a novel type of ring tranformation which occurs, together with the formation of a direct substitution product and a chain compound¹, when 2-bromoand 2-chloropyridine are treated with lithiumpiperidide in a medium containing an excess of piperidine, i.e.the formation of a bicyclic product by abstraction of 2 molecules of hydrogen halide from 2 molecules of the substrate. As an example the reaction of 2-bromopyridine (1) is described.

A stirred solution of (1) (1 mmole) in piperidine (50 mmoles) was reacted at 35° under nitrogen by adding dropwise phenyllithium (4 mmoles) in 4 ml ether over 5 min, evaporating the ether during the procedure. The mixture was allowed to react with stirring for 6 h, whereupon by working up as usual⁴ along with 2-piperidinopyridine ((2),2%) and 1-cyano-4-piperidino-1,3-butadiene ((3),trace), 8-cyanoquinoline (4) was obtained in a yield of 20%. The product (4) was separated by GLC using a column packed with 0.5 g FFAP on 2.6 g Diatoport-S (retention times of (2),(3) and (4) 1.4, 11.2 and 17.7 min respectively at 220° and F_o(N₂) 55 ml/min).

XXXIInd Communication on Ring transformations from this laboratory; previous paper: J.Pomerski, H.J.den Hertog, D.J.Buurman and N.H.Bakker, <u>Rec.Trav.Chim., in</u> press. The formation of (4) can be explained by the following scheme:

It is assumed that anion (5) adds to C-6 of a molecule of (1) yielding (6) after which ring fission affords (7), a sequence like that leading to the formation of (3) by the attack of the piperidide ion on C-6 of (5) followed by fission of the 1-6 bond¹. Finally (7) is converted into (4) by an internal addition elimination process via (8).

Similar transformations were found to occur when reacting derivatives of 2-bromopyridine such as 2-bromo-5-methyl- and 2-bromo-5-ethoxypyridine, together with other products the 3,6-dimethyl and 3,6-diethoxy derivatives of 8-cyanoquinoline being formed, melting at 125° and 120-122° respectively.

Acknowledgement

We are indebted to Miss J.C.de Wit for collaboration in some experiments and to Messrs. W.P.Combé, Drs.C.A.Landheer, W.Ch.Melger, Dr.P.Smit and A.van Veldhuizen for assistance in chromatographic and spectroscopic analyses.

References

H.N.M.van der Lans, H.J.den Hertog and A.van Veldhuizen, <u>Tetrahedron Letters</u> 1971,1875
J.W.Streef and H.J.den Hertog, <u>Rec.Trav.Chim.</u> <u>88</u>, 1391 (1969)
H.J.den Hertog, R.J.Martens, H.C.van der Plas and J.Bon, <u>Tetrahedron Letters</u> 1966,4325
Cf. H.C.van der Plas, T.Hijwegen and H.J.den Hertog, <u>Rec.Trav.Chim.</u> <u>84</u>, 53 (1965)